Longitudinal Brain MRI Analysis with Uncertain Registration

نویسندگان

  • Ivor J. A. Simpson
  • Mark W. Woolrich
  • Adrian R. Groves
  • Julia A. Schnabel
چکیده

In this paper we propose a novel approach for incorporating measures of spatial uncertainty, which are derived from non-rigid registration, into spatially normalised statistics. Current approaches to spatially normalised statistical analysis use point-estimates of the registration parameters. This is limiting as the registration will rarely be completely accurate, and therefore data smoothing is often used to compensate for the uncertainty of the mapping. We derive localised measurements of spatial uncertainty from a probabilistic registration framework, which provides a principled approach to image smoothing. We evaluate our method using longitudinal deformation features from a set of MR brain images acquired from the Alzheimer's Disease Neuroimaging Initiative. These images are spatially normalised using our probabilistic registration algorithm. The spatially normalised longitudinal features are adaptively smoothed according to the registration uncertainty. The proposed adaptive smoothing shows improved classification results, (84% correct Alzheimer's Disease vs. controls), over either not smoothing (79.6%), or using a Gaussian filter with sigma = 2mm (78.8%).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pseudo-CT Generation from Magnetic Resonance Imaging by fuzzy look up table algorithm

Introduction: Despite growing interest in the use of magnetic resonance imaging (MRI) in the external radiotherapy design process (RT), Computer Tomography (CT) remains a gold standard and is regarded as a basic imaging modality in radiotherapy. MRI shows the high contrast in soft tissues without any radiation exposure to patients. As a result, MRI is used in functional tissue ...

متن کامل

A New Framework for Analyzing Structural Volume Changes of Longitudinal Brain MRI Data

Cross-sectional analysis of longitudinal MRI data might be sub-optimal as each dataset is analyzed independently. In this study, we evaluate how much variability can be reduced by analyzing structural volume changes of longitudinal data using longitudinal analysis. We propose a two-part pipeline that consists of longitudinal registration and longitudinal classification. The longitudinal registr...

متن کامل

Developmental change in regional brain structure over 7 months in early adolescence: Comparison of approaches for longitudinal atlas-based parcellation

Early adolescence is a time of rapid change in neuroanatomy and sexual development. Precision in tracking changes in brain morphology with structural MRI requires image segmentation with minimal error. Here, we compared two approaches to achieve segmentation by image registration with an atlas to quantify regional brain structural development over a 7-month interval in normal, early adolescent ...

متن کامل

aBEAT: A Toolbox for Consistent Analysis of Longitudinal Adult Brain MRI

Longitudinal brain image analysis is critical for revealing subtle but complex structural and functional changes of brain during aging or in neurodevelopmental disease. However, even with the rapid increase of clinical research and trials, a software toolbox dedicated for longitudinal image analysis is still lacking publicly. To cater for this increasing need, we have developed a dedicated 4D A...

متن کامل

Construction of a Deformable Spatiotemporal MRI Atlas of the Fetal Brain: Evaluation of Similarity Metrics and Deformation Models

The development and identification of best methods in fetal brain MRI analysis is crucial as we expect an outburst of studies on groupwise and longitudinal analysis of early brain development in the upcoming years. To address this critical need, in this paper, we have developed a mathematical framework for the construction of an unbiased deformable spatiotemporal atlas of the fetal brain MRI an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention

دوره 14 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2011